

Next Generation X-Ray Optics

Mono-crystalline Silicon Meta-shell X-ray Optics

W.W. Zhang, K.D. Allgood¹, M.P. Biskach¹, J. Bonafede¹, K.W. Chan², M. Hlinka¹, J.D. Kearney¹, L.D. Kolos, J.R. Mazzarella¹, G. Matthews³, R.S. McClelland, H. Mori², A. Numata¹, T. Okajima, L.G. Olsen, R.E. Riveros², T.T. Saha, and P.M. Solly¹

NASA Goddard Space Flight Center, ¹also Stinger Ghaffarian Technologies, Inc., ²also University of Maryland, Baltimore County, ³also ATA Aerospace LLC

Objective

Develop and perfect an X-ray mirror technology that has the following characteristics:

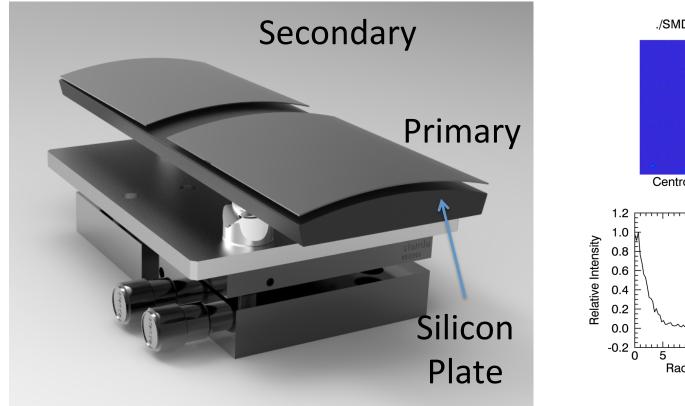
- **Better PSF** than Chandra's, both **on-** and **off-axis**,
- >10X lighter than Chandra's per unit effective area, and
- >10X less expensive than Chandra's per unit effective are.

Future Missions Enabled

• **Sounding rocket:** OGRE (PI: Randy McEntaffer) • Explorers: STAR-X (PI: William Zhang), and FORCE (PI: Koji Mori) • **Probes:** AXIS (PI: Richard Mushotzky), HEX-P (PI: Fiona Harrison), and TAP (PI: Jordan Camp) • Flagships: Lynx and Generation-X

Meta-shell Hierarchical Approach ~10⁴ Mirror Segments ~10 Meta-shells **1** Assembly

Four Essential Technical Elements

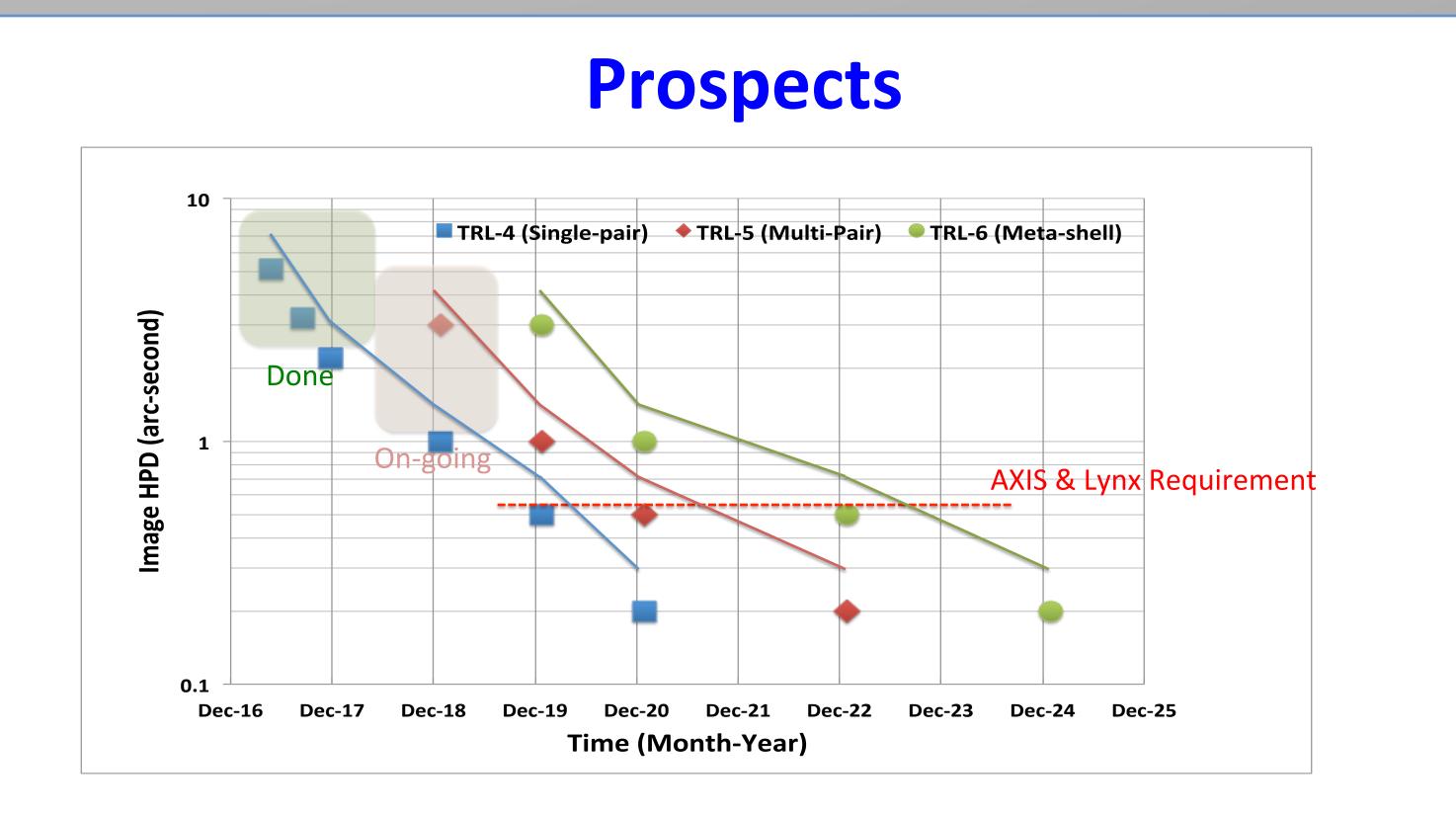

Mirror Fabrication

- Use of precision polishing processes to achieve best possible PSF, all the way to diffraction limits.
- Use of mono-crystalline silicon to make thinnest possible mirrors, down to 0.2 mm.
- Use of mass production to minimize cost.

Mirror Coating

Use of iridium and other combination of materials to

Validation of Technical Elements: **Building and X-ray Testing Mirror Modules**


- 50%PD: 2.2" 90%PD: 8.0" 5 10 15 20 2 Diameter (arcsec) 10 15 20
- Full illumination with 4.5 keV X-rays.
- Best X-ray images achieved with lightweight X-ray mirrors.
- Demonstrating the possibility of building lightweight arc-second X-ray telescopes.

maximize reflectivity.

- Use of a layer of iridium or silicon oxide on backside to eliminate distortion caused by coating stress. **Mirror Alignment**
- Use of 4 points at quarter locations to kinematically support and align each mirror.
- Use of precision lapping to adjust the heights of four points to achieve alignment.

Mirror Bonding

• Use of epoxy to permanently fix each mirror.

Acknowledgements: Work funded by NASA through GSFC/IRAD, ROSES/APRA, and ROSES/SAT. Contact: William.W.Zhang@nasa.gov