

DISCOVERY OF WARM-HOT CGM AROUND A STARBURST L_{\star} GALAXY

INTRODUCTION

Circumgalactic medium (CGM): The multi-phase gaseous medium around the disk of spiral galaxies, extended upto the virial radius of the galaxies. "Fuel tank, waste dump and recycling center"[1] of galaxies all at the same time, playing a key role in galaxy evolution.

Figure 1: An artist's impression of CGM[1]

OBJECTIVE & METHODS

Objective:

1. Detect and characterize the circumgalactic medium of NGC 3221, a late-type star-forming $(SFR \sim 9.92 M_{\odot} yr^{-1}) L_{\star} galaxy$

2. Model the CGM to estimate the mass and the spatial extent. Relate that to the galactic properties like sSFR, M_{\star} , R_{vir} etc.

Methods: Simultaneously fit the Suzaku spectra of the galaxy-field and an off-field $\sim 2^o$ away as a composite of LB & SWCX, GH, CXB and the actual signal to obtain the emission integral of CGM within different r_{\perp}

- A possible solution to the missing-baryons and missing-metals problem
- Mass measurements of cold and cool (T < 10^4 to $\sim 10^{4-5}$ K) gas are highly uncertain due to assumptions in metallicity and ionization corrections. Warm (T $\sim 10^{5-6}$ K) and hot (T > 10^{6} K) phases are the right places to hit on
- The diffuse soft X-ray emission from warmhot phase is probed using OVII (0.567 keV) and O VIII lines (0.659 keV)
- Very few luminous spirals and ellipticals have their halos detected in warm-hot phase
- Independent constraints on temperature, density, metallicity profiles are rare
- Dependence of warm-hot baryons on stellar or halo mass, and SFR are NOT known yet

RESULT-I: OI CONTAMINATION IN Suzaku DATA

The off-field spectrum observed in November, 2014 shows a significant excess around 0.5 keV unless the OI fluorescent line contamination is taken into account, leading to a very poor fit and poorly constrained parameter values. It confirms the importance of considering OI line contamination in post-2011 data ([2]), now with a more robust spectral modeling.

Figure 3: Off-field spectrum without O I line

REFERENCES

1]	Tumlinson J. et al. ARA&A, 55(1):389, 2017.	[3]	Yos
2]	Sekiya N. et al. <i>PASJ</i> , 66(2):L3, 2014.	[4]	Gu

We have detected warm-hot CGM outside 20 kpc region of NGC 3221, at $\sim 3\sigma$ confidence upto 100 kpc and at $\sim 2\sigma$ confidence in the whole FOV, covering \sim 200 kpc region around NGC 3221.

SANSKRITI DAS, ANJALI GUPTA, SMITA MATHUR; DEPARTMENT OF ASTRONOMY, THE OHIO STATE UNIVERSITY

RESULT- II: AN EXTENDED CGM DETECTED BEYOND 20 kpc!

Figure 5: Spectrum within 100 kpc of NGC3221

 $n \sim 1.8^{+0.3}_{-0.4} \times 10^{-4} cm^{-3}$ (assuming $n_p \sim n_e$, R_{halo} = 150 kpc). Mass $\sim 5.68^{+0.92}_{-1.25} \times 10^{10} M_{\odot}$

Figure 4: Off-field spectrum including O I line

shino T. et al. *PASJ*, 61:805, 2009. upta A.; Mathur S. et al. *ApJ*, 756(1):L8, 2012.

• Comparable contribution from the local bubble (LB), OI line and the CGM of NGC 3221 makes the detection challenging

• The off-field plays the role of reference. Due to similar temperature and functional form of the LB and the CGM of NGC 3221, a separate fitting of the galaxy-field does not yield any confident detection

• Temperature: $1.66^{+0.49}_{-0.37} \times 10^6$ K within 100 kpc; $1.74^{+0.61}_{-0.18} \times 10^6$ K within 200 kpc (T_{GH} ~ $(1.8-2.4) \times 10^6 \text{ K [3]})$

• Emission measure: $7.40^{+2.60}_{-2.89} \times 10^{-6}$ cm⁻⁶ kpc at 100 kpc (assuming $Z = Z_{\odot}$, constant density) [EM_{GH} ~ $3.0 \pm 0.6 \times 10^{-6}$ cm⁻⁶kpc ([4])]

CONCLUSION & FUTURE PLAN

• Discovered hot CGM around a L_{*} starburst galaxy upto $\sim 150~{
m kpc}$

• Confirmed that the detected diffuse gas is NOT an extra-planar emission, therefore residing in the halo

• Verified that the warm-hot phase of CGM is almost isothermal

• Estimated density and mass assuming a homogeneous sphere

• Obtain emission measure at different distances from the galaxy's center

• Test β -model and NFW density profile

CONTACT INFORMATION

Email: das.244@osu.edu